
Unveiling the Surprising Efficacy of Navigation Understanding in
End-to-End Autonomous Driving

Zhihua Hua1,3, Junli Wang4,3, Pengfei Li3, Qihao Jin1,3, Bo Zhang2,
Kehua Sheng2, Yilun Chen3, Zhongxue Gan1, and Wenchao Ding1

Abstract— Navigation information serves as a critical com-
ponent in end-to-end autonomous driving systems, providing
essential decision-making references for planner. However, our
experimental results reveal that many existing end-to-end au-
tonomous driving systems may not adequately comprehend nav-
igation information, consequently failing to execute appropriate
planning based on navigation information. To overcome this
limitation, we propose a Sequential Navigation Guidance (SNG)
framework, which is designed based on real-world navigation
patterns. The SNG incorporates both a navigation path to con-
strain long-term trajectories and Turn-by-Turn (TBT) informa-
tion for real-time decision logic. We also introduce an efficient
and streamlined model that achieves state-of-the-art (SOTA)
performance solely through the accurate modeling of navigation
information, without requiring auxiliary loss functions from
perception tasks. Codes will be publicly available at https:
//github.com/Zhihua-Hua/NavigationDrive.

I. INTRODUCTION

In recent years, end-to-end autonomous driving system
has garnered significant attention from researchers [1], [2].
The end-to-end paradigm simplifies traditional modular sys-
tems, is better suited to data-driven training approaches, and
demonstrates enhanced generalization performance [3], [4].

Navigation information plays a pivotal role in end-to-
end autonomous driving systems [5], providing essential
directional references for trajectory planning. Unlike pre-
diction [6], which generates multimodal trajectory forecasts,
planning requires explicit navigation inputs to produce deter-
ministic driving trajectories [7], [8]. Despite the critical role
of navigation information in end-to-end autonomous driving
systems, we have made a surprising observation: removing
or corrupting navigation information in existing end-to-
end driving methods minimally affects planning performance
and, in some cases, even improves specific performance
metrics. For instance, as illustrated in Fig. 1, our experiments
with the Transfuser [9] on the NAVSIM [10] benchmark
demonstrate that complete removal of navigation informa-
tion paradoxically yields superior results. This phenomenon
contradicts basic driving logic, as one would anticipate a
substantial decline in planner performance when explicit
navigation information is absent. This unexpected outcome

1 Academy for Engineering and Technology, Fudan University,
China {zhhua24, qhjin24}@m.fudan.edu.cn, {ganzhongxue,
dingwenchao}@fudan.edu.cn

2 Didi Chuxing {zhangbo, shengkehua}@didiglobal.com
3 Institute for AI Industry Research (AIR), Tsinghua

University, China {li-pf22}@mails.tsinghua.edu.cn,
{chenyilun}@air.tsinghua.edu.cn

4 Institute of Automation, Chinese Academy of Sciences
{wangjunli2022}@ia.ac.cn

Effectiveness
of SNG

Baseline methods:
navigation

perturbed results

Fig. 1: We demonstrate the effects of introducing perturba-
tions to the driving command and the effectiveness of the
SNG. In driving command based method (represented by
the dotted line), the complete removal or the introduction
of a certain level of noise has minimal impact on the
planning outcomes, as all experimental metrics converge
within the green circle. In contrast, the model based on
SNG (represented by the solid line) demonstrates significant
improvements in DAC, EP and PDM scores [10], which are
closely related to the quality of navigation information.

raises a critical question: Do current end-to-end autonomous
driving systems truly understand and utilize navigation in-
formation?

Our answer is unequivocally negative. Current re-
search [11]–[13] predominantly employs driving commands
(such as Turn Left, Go Forward, Turn Right, None) to
represent navigation information, utilizing one-hot encoding
to discretize driving behaviors into finite categories. How-
ever, this approach exhibits the following limitations: (1)
the annotation process relies on a fixed temporal horizon
or spatial intervals [7], [10] , which can lead to ambigu-
ous interpretations in certain scenarios. As illustrated in
Fig. 2 (a), a vehicle’s stationary trajectory caused by a
front vehicle is erroneously labeled as “Go Forward”, while
the actual navigation information is “Turn Left”; (2) this
representation suffers from oversimplification. In real-world
scenarios, navigation information is influenced by a complex
interplay of road conditions, traffic regulations, and surround-
ing vehicle dynamics [14], rendering the limited discrete
categories insufficient for comprehensive representation. As
shown in Fig. 2 (b), where a rule-based “Turn Right”
command significantly deviates from the vehicle’s actual

https://github.com/Zhihua-Hua/NavigationDrive
https://github.com/Zhihua-Hua/NavigationDrive

continuous lane-changing behavior. Consequently, end-to-
end autonomous driving systems based on driving commands
fail to effectively utilize navigation information, and their
performance likely stems from overfitting to specific input
channels [15], [16].

To address these limitations and enhance the naviga-
tion semantic comprehension capabilities of end-to-end au-
tonomous driving systems, we propose a novel paradigm of
Sequential Navigation Guidance (SNG), inspired by real-
world navigation patterns [17]. The SNG effectively rep-
resents navigation information by integrating static global
path planning with dynamic high-level guidance: (1) Navi-
gation Path: A predefined trajectory segment extracted from
the global path, serving as a reference line for planning,
which can be easily sampled from coarse-grained navigation
points obtained through the SD map; (2) Real-time Turn-
by-Turn (TBT) Information: A comprehensive set of high-
level guidance cues, including current route instructions,
distance and time estimations, traffic conditions, and speed
limits, which collectively inform the planning process. Both
types of information can be conveniently acquired through
navigation APIs and are readily available off-the-shelf in
practical deployment.

The proposed SNG demonstrates remarkable efficacy in
modeling navigation information, offering a plug-and-play
solution that significantly enhances the planning capabili-
ties of end-to-end autonomous driving systems. We have
developed a streamlined and efficient pipeline that, without
the need for auxiliary loss from perception tasks, achieves
state-of-the-art performance on both the Bench2Drive [18]
a closed-loop benchmark based on Carla [19] and the
NAVSIM [10] a real-world evaluation benchmark. Our con-
tributions can be summarized as follows:

1. To address the limitations of current navigation rep-
resentation, we propose a novel Sequential Navigation
Guidance approach to structure navigation information,
offering both long-term trajectory constraints and real-
time decision-making logic.

2. We investigate the optimal combination of navigation
paths and TBT information, demonstrating that efficient
modeling of navigation information can be achieved
without relying on high-precision navigation paths.

3. We develop an effective pipeline that, without incorpo-
rating auxiliary tasks and utilizing precise navigation
information, achieves state-of-the-art (SOTA) perfor-
mance in both Bench2Drive and NAVSIM benchmarks.

II. RELATED WORK

A. End to end autonomous driving

Traditional autonomous driving systems are often com-
posed of multiple modular components [20]–[22], whereas
end-to-end autonomous driving enables a direct mapping
from raw sensor data to planning trajectories [3], [23]. A
subset of research [24]–[26] focuses on simulator-based [19]
closed-loop end-to-end autonomous driving. While prede-
fined routes can be obtained within simulation environments,

(a)

(b)

Fig. 2: We demonstrate the limitations of driving commands
in representing navigation information. (a) The vehicle gen-
erates a stationary trajectory due to yielding to a preceding
vehicle. The driving command annotated based on the tra-
jectory is “Go Forward”, while the actual driving path of
the vehicle is “Turn Left”. (b) The vehicle’s driving path
involves a lane change to the right, but the annotated driving
command is “Turn Right”.

some studies [24], [25] continue to employ driving com-
mands as a representation of navigation information. Due to
the significant gap between simulation and the real world,
open-loop end-to-end autonomous driving based on real-
world scenarios [27] remains the primary focus of most re-
search efforts, particularly those utilizing driving commands.
UniAD [3] has significantly enhanced the performance of
autonomous driving systems by integrating multiple modules
into an end-to-end framework. VAD [7] employs a fully
vectorized approach to model driving scenarios, ensuring
planning safety while improving operational efficiency. BEV-
Planner [16] transforms sensor inputs into BEV (Bird’s Eye
View) features, serving as an intermediate representation
within the end-to-end architecture. GenAD [13] introduces
a novel generative framework that aids planning tasks by
predicting the dynamic interactions between the ego vehicle
and the environment.

B. Navigation information for planning

Navigation information plays a critical role in autonomous
driving planning. Current end-to-end benchmarks primarily
rely on driving commands as navigation inputs. In real-world
datasets [27]–[29], driving commands (e.g., “Turn Left”)
are implicitly inferred from expert trajectories to model
navigation information. Although simulators [18], [19], [30]
provide waypoints between the current position and the
target location, they still use discrete driving commands as
the primary input. Several methods, such as UniAD [3]
and BEVPlanner [16], embed navigation commands into
latent spaces as additional model inputs. ST-P3 [8] samples
multiple trajectories and filters them based on geometric
features aligned with driving commands, while VAD [7]
generates results for all command categories and selects the
corresponding trajectory as the final output. TCP [24] and
TransFuser [10], [9] concatenate driving commands with
ego states as conditional inputs. However, relying solely on

hidden state

Sequential Navigation
Guidance

Instruction: In 15 meters, turn
left.
Lane guidance: Stay in your
current lane.
Traffic condition: (traffic lights:
1; distance: 15m; duration: 2min)

”

Navigation Path

TBT Information

Transformer Backbone

Ego State

Cross
Attention

Pipeline

Multi-view Images

Vision
Encoder

State Dropout
Encoder

Path
Encoder

Tokenizer

MLP

Trajectory

Sequential Navigation
Guidance

Fig. 3: Overview of our method. Sequential navigation guidance is consists of navigation path and TBT information. The
full pipeline of our model is divided into two phases. The multimodal feature fusion encoder and the transformer backbone
of LLM (Large Language Model).

driving commands to model navigation information leads
to issues such as intent ambiguity (e.g., a left lane change
may be misclassified as both “Go Straight” and “Turn Left”)
and significant deviations from real-world scenarios. To
address these limitations, we propose integrating TBT (Turn-
by-Turn) instructions and navigation paths to model more
accurate navigation information, thereby improving planning
rationality, safety, and human-like interaction.

C. Multimodal large models for planning

Multimodal large models facilitate seamless interaction
and understanding across diverse data types, driving transfor-
mative innovations in fields such as natural language process-
ing and beyond [31]–[33]. Given the necessity of processing
sensor data from multiple modalities and performing joint
planning in autonomous driving systems, multimodal large
models naturally serve as an effective backbone for such
systems. DriveGPT4 [34] leverages multimodal large models
to process multi-frame video and text inputs, simultaneously
outputting reasoning processes during planning, thereby sig-
nificantly enhancing the interpretability and interactivity of
autonomous driving systems. LMDrive [35] unifies mul-
timodal sensor data into a textual feature space, greatly
improving the interactivity of autonomous driving systems
and demonstrating exceptional performance in CARLA [19]
closed-loop evaluation. DriveLM [12] mimics human rea-
soning processes by structuring driving as a graph-structured
reasoning task, achieving notable improvements in planning
effectiveness and zero-shot capabilities. Therefore, we pro-
pose an efficient pipeline based on a multimodal large model,
capable of processing data from various sensor modalities
and performing end-to-end planning tasks.

III. SYSTEM OVERVIEW

As illustrated in Fig. 3, our approach comprises two
key components: Sequential Navigation Guidance (SNG)
and the network pipeline. The SNG integrates a navigation
path that imposes long-term trajectory constraints, along
with Turn-by-Turn (TBT) information that facilitates real-
time decision-making logic. Both types of information are
easily accessible through navigation APIs in real-world de-
ployments, significantly reducing the sim-to-real gap. The
network pipeline consists of a multimodal feature fusion en-
coder and a transformer decoder. The encoder processes and
integrates multimodal data, including text, navigation points,
ego-vehicle states, and multi-view images, and projects these
features into the latent space of the transformer decoder. The
transformer decoder, which includes a transformer backbone
and a cross-attention decoder, takes the fused features as
input and generates hidden states. These states undergo
cross-attention with navigation path features to regress the
predicted trajectory.

IV. METHODS

We first introduce the modeling approaches for navigation
information, including the rule-based approach in Section IV-
A.1 and sequential navigation guidance in Section IV-A.2.
In Section IV-B, we detail our model architecture, which
comprises multimodal feature fusion encoder in Section IV-
B.1 and a transformer-based decoder in Section IV-B.2.

A. Modeling Navigation Information

1) Driving command: The current frame is defined as
t. For driving commands c based on a fixed time horizon
T [7],the vehicle’s future trajectory is defined as τ =

{(xt+1, yt+1), (xt+2, yt+2), . . . , (xt+T , yt+T)} in the ego
vehicle’s coordinate system. Here (xt+n, yt+n) represents
the lateral and longitudinal coordinates at time step t + n,
respectively. The longitudinal coordinate yt+T at the trajec-
tory’s endpoint represents the vehicle’s longitudinal deviation
relative to its position at time t+ T . The driving command
is then determined based on an offset threshold C, which
defines the acceptable range of longitudinal deviation.

c =


[1 0 0] if yt > C,

[0 1 0] if |yt| ≤ C,

[0 0 1] if yt < −C.

(1)

where c is a one-hot vector with elements corresponding
to Turn Left, Go Forward, and Turn Right. For driving
commands based on a fixed path length D [10], τ is defined
as the centerline of the predefined route over a specified
distance D. In this case, the trajectory is parameterized by
distance rather than time, and the longitudinal deviation is
evaluated at the endpoint of the path. If no route is available
or the route is too damaged to be reliably followed, the
driving command will be set to none.

2) Sequential navigation guidance: In real-world driving
scenarios, most driving behaviors are guided by specific nav-
igation information, often facilitated by tools such as Google
Maps [17]. Navigation information typically comprises two
key components: a pre-planned global route R, generated
using [36], and real-time turn-by-turn (TBT) information I .
The global route, when transformed from the world coor-
dinate system to the vehicle coordinate system, serves as a
reference line for the vehicle’s direction of driving. Simulta-
neously, TBT information, which includes high-level textual
prompts, provides immediate guidance for local maneuvers.
We construct SNG by integrating the navigation path and
turn-by-turn (TBT) information, as illustrated in Fig. 3.
Specifically, a predefined 40m route is selected as a refer-
ence, and sampling is performed to obtain the navigation path
P = {(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂NP

, ŷNp
)}, Np represents the

number of navigation points. The TBT information includes
sequential action instructions, lane guidance, and traffic con-
ditions. The vehicle’s ego state St = (vtx, v

t
y, a

t
x, a

t
y), where

vx and vy denote the longitudinal and lateral velocities, and
ax and ay represent the longitudinal and lateral accelerations
at time, along with the front-view image and the predefined
route, are provided as input prompts to the GPT-4o [31]
model for generating the TBT information.

B. Network Architecture

We employ LLaVA [39] as the backbone, integrating a
large language model, Qwen2.5 [40], and a vision encoder,
SigLIP [41]. Following the method [42], we incorporate
additional encoders specifically designed for the navigation
path and ego state, thereby augmenting the model’s capacity
to process multimodal inputs. Our method can also integrate
various existing perception modules used in previous end-
to-end planners [7], [20]. By aligning the feature dimensions
output by the perception module with the feature space of the

LLM backbone, the model can seamlessly incorporate BEV
(Bird’s Eye View) features or LiDAR features. The hidden
states output by the transformer backbone are enhanced
through a cross-attention mechanism to improve interaction
with the navigation context.

1) Scene representation: For a driving scenario, the in-
put is represented as TBT information I , navigation path
P = {(x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂NP

, ŷNp
)}, multi-view im-

ages V = (M1,M2, ...MNM), and the vehicle’s ego state
St = (vtx, v

t
y, a

t
x, a

t
y). The TBT information I is encoded

into a FT ∈ RNT×H through LLM tokenizer, where NT

denotes the number of text tokens and H corresponds to
the feature dimension of the LLM’s transformer backbone.
Similarly, P is encoded into FP ∈ RNP×H through multi-
layer perceptron (MLP) layers. We use a pre-trained SigLIP
vision encoder [41] to extract features F ′

M from multi-view
images, which are then projected into FM ∈ RN ′×H via
a linear transformation. To mitigate overfitting on ego state
inputs [15], [16], we adopt an attention-based state dropout
encoder (SDE) inspired by [43], which applies dropout to
each state channel and processes ego state to FE ∈ R4×H .

2) Transformer Decoder: After obtaining the representa-
tions of the driving scenario, all features are concatenated
into F and fed as input to the transformer backbone.

F = Concat(FT , FP , FM , FE) (2)

The hidden states output by the transformer backbone
interact with the navigation query through a cross-attention
module, followed by MLP layers to predict the trajectory.
The loss function consists of the L1 loss between the
predicted and the ground truth trajectory.

L = ∥τ̂ − τ∥ (3)

where the τ̂ denotes the predicted trajectory and τ denotes
the future ground truth trajectory.

V. EXPERIMENTS

We evaluate our method in Bench2Drive [18], a closed-
loop evaluation benchmark under CARLA Leaderboard
2.0 [19] for end-to-end autonomous driving. The base set,
consisting of 1,000 clips, is used for training, while the model
is evaluated on 220 official routes. Additionally, we conduct
closed-loop experiments in the NAVSIM benchmark [10] to
assess its performance in real-world scenarios.

A. Implementation Details

We employ pre-trained Qwen2.5-0.5B as the transformer
backbone and pre-trained SigLIP-So400M as the vision
encoder, with a patch size of 14 and an image size of 384. In
the state dropout encoder (SDE), we apply a dropout rate of
0.5 to the four ego state channels. The visual inputs consist
of front and rear camera images, which undergo additional
downsampling after passing through the vision encoder. The
TBT information is only used in the NAVSIM experiment.
We use a learning rate of 1e-6 with a cosine annealing
schedule and a warmup ratio of 0.03. The model is trained

Method Open-loop Metric Closed-loop Metric

Avg. L2 ↓ Driving Score ↑ Success Rate (%) ↑ Efficiency ↑ Comfortness ↑

AD-MLP [15] 3.64 18.05 0.00 48.45 22.63
UniAD-Tiny [3] 0.80 40.73 13.18 123.92 47.04
UniAD-Base [3] 0.73 45.81 16.36 129.21 43.58
VAD [7] 0.91 42.35 15.00 157.94 46.01
Ours 0.82 67.17 35.90 158.58 22.30

TCP* [24] 1.70 40.70 15.00 54.26 47.80
TCP-ctrl* [24] – 30.47 7.27 55.97 51.51
TCP-traj* [24] 1.70 59.90 30.00 76.54 18.08
TCP-traj w/o distillation [24] 1.96 49.30 20.45 78.78 22.96
ThinkTwice* [26] 0.95 62.44 31.23 69.33 16.22
DriveAdapter* [25] 1.01 64.22 33.08 70.22 16.01

TABLE I: Open-loop and Closed-loop Results in Bench2Drive. All results are trained on the base training set. Avg. L2
is averaged over the predictions in 2 seconds under 2Hz. * denotes expert feature distillation.

Method Ability ↑

Merging Overtaking Emergency Brake Give Way Traffic Sign Mean

AD-MLP [15] 0.00 0.00 0.00 0.00 4.35 0.87
UniAD-Tiny [3] 8.89 9.33 20.00 20.00 15.43 14.73
UniAD-Base [3] 14.10 17.78 21.67 10.00 14.21 15.55
VAD [7] 8.11 24.44 18.64 20.00 19.15 18.07
Ours 33.75 11.11 46.60 50.00 50.00 38.08

TCP* [24] 16.18 20.00 20.00 10.00 6.99 14.63
TCP-ctrl* [24] 10.29 4.44 10.00 10.00 6.45 8.23
TCP-traj* [24] 8.89 24.29 51.67 40.00 46.28 34.22
TCP-traj w/o distillation [24] 17.14 6.67 40.00 50.00 28.72 28.51
ThinkTwice* [26] 27.38 18.42 35.82 50.00 54.23 37.17
DriveAdapter* [25] 28.82 26.38 48.76 50.00 56.43 42.08

TABLE II: Multi-Ability Results in Bench2Drive. All results are trained on the base training set. * denotes expert feature
distillation.

Method NC↑ DAC↑ TTC↑ Comf.↑ EP↑ PDMS↑

UniAD [3] 97.8 91.9 92.9 100 78.8 83.4
PARA-Drive [11] 97.9 92.4 93.0 99.8 79.3 84.0
LTF [9] 97.4 92.8 92.4 100 79.0 83.8
Transfuser [9] 97.7 92.8 92.8 100 79.2 84.0
Transfuser† 97.9 93.8 93.5 100 79.6 85.1
DRAMA [37] 98.0 93.1 94.8 100 80.1 85.5
Hydra-MDP [38] 98.3 96.0 94.6 100 78.7 86.5

Ours 97.7 97.1 93.1 100 83.1 88.2

TABLE III: Comparison on NAVSIM navtest split with
closed-loop metrics. † represents the results we reproduced.
PDM score (PDMS) [10] is weighted aggregation of several
sub-scores: no at-fault collisions (NC), drivable area compli-
ance (DAC), time-to-collision (TTC), comfort (Comf.), and
ego progress (EP).

on 8 × NVIDIA A100 GPU 80G with a per-GPU batch size
of 8 for 10 epochs.

B. Main results

We compare our method with other E2E-AD methods
in both Bench2Drive and NAVSIM. Table I and Table II
present the results in Bench2Drive, showing that our method
achieves state-of-the-art performance. Due to the lack of
accurate modeling of navigation information, models based
on driving commands are prone to losing their targets during
the planning process, resulting in trajectories that tend to
deviate in random directions. Furthermore, the presence of
cumulative errors in closed-loop experiments further de-
grades the performance of driving command-based meth-
ods, leading to poor performance in metrics such as task
completion rate and driving score. While, our SNG based
model has significantly outperformed existing methods in
these metrics. Compared to UniAD-Base [3], our method
surpasses it by 46.6% and 119.4% in terms of Driving Score
and Success Rate, respectively. In the mean Multi-Ability
score, our method outperforms VAD [7] by 110.7%. Our

Original (Left)

None

Forward

Right

Fig. 4: We demonstrate the impact of introducing noise to
the driving command on the predicted trajectory during the
inference process of the Transfuser [9]. The experiments are
based on the correctly trained checkpoint of the Original
model in Table IV. The scenario involved an open intersec-
tion without traffic lights.

method has also demonstrated superior performance across
various sub-ability tests, except for overtaking tasks. This
limitation stems from the use of only front and rear images
in the Bench2Drive experiments, which results in the absence
of lateral perspective information and consequently leads
to failures in certain overtaking scenarios. However, since
our pipeline can seamlessly integrate existing perception
modules, this limitation can be readily addressed in future
work. Furthermore, in comparison with the expert feature
distillation approach, our method continues to maintain a
leading position in both Driving Score and Success Rate.

Table III presents the results on NAVSIM [10]. The perfor-
mance of Hydra-MDP [38] is enhanced through additional
training to optimize for the EP evaluation metric, utilizing
supplementary supervision and weighted confidence post-
processing. Despite this, our model achieves SOTA perfor-
mance without relying on any supervision from perception
tasks. Notably, our model exhibits improvement on the DAC
(drivable area compliance) metric, which underscores the
enhanced efficacy of the proposed SNG.

C. Ablation study

1) Driving Command Fails to model Navigation informa-
tion: Undoubtedly, clear navigation information plays an
important role in autonomous driving systems, providing
essential guidance for determining the vehicle’s direction of
driving. However, as shown in Table IV, after introducing
varying levels of noise into the driving command, the model
can yield results that are comparable to, or surpass the official
results on metrics on PDM score and others. The model
demonstrates performance comparable to the original under
random and left command. It exhibits a slight decline in

Command NC↑ DAC↑ TTC↑ Comf.↑ EP↑ PDMS↑

Original 97.84 93.77 93.53 99.98 79.58 85.14
None 97.74 94.55 93.13 99.98 80.01 85.51
Random 97.67 94.04 93.19 99.97 79.67 85.11
Left 97.83 94.17 93.32 99.98 79.61 85.22
Right 97.69 93.46 93.15 99.99 78.88 84.44
Forward 97.66 93.15 93.08 99.99 78.89 84.23

TABLE IV: Command ablation results in NAVSIM.
We conducted experiments on NAVSIM [10] using Trans-
fuser [9] by modifying the input driving commands. Original:
ground truth driving command; None: no driving command
added; Random: random driving command; Left, Right,
Forward: fixed driving commands. All results are obtained
under identical training parameters. The performance of our
reproduced Original surpasses the official results reported
in [10]. The introduction of noise into the driving command
has minimal impact on the final planning performance.

ID Navigation
Path

TBT
Information

Driving
Command NC↑ DAC↑ PDMS↑

0 − − − 97.2 95.1 85.9
1 − − ✓ 97.5 95.3 86.1
2 − ✓ − 97.6 95.2 86.4
3 2× 20 − − 97.8 95.1 86.4
4 2× 20 ✓ − 97.5 96.1 87.6
5 4× 10 − − 97.5 96.6 87.7
6 4× 10 ✓ − 97.7 97.1 88.2
7 8× 5 − − 97.5 96.2 87.2
8 8× 5 ✓ − 97.5 96.6 87.6

TABLE V: Ablation of navigation information representa-
tion. We conduct ablation studies on the sampling interval of
the navigation path, TBT information and driving commands.

performance when right or forward commands are utilized.
Notably, the model achieves enhanced performance in the
absence of any command. Regarding the NC and DAC met-
rics, which are more sensitive to navigation information, the
introduction of errors in the command shows no significant
changes in these metrics.

We present qualitative results in Fig. 4, based on an open
intersection scenario without traffic lights, which allows the
planner to choose any direction. However, when driving
commands such as “Go Forward” or “Turn Right” are
applied, the model fails to generate trajectories aligned with
the intended direction. Particularly, in the absence of driving
command inputs, the model produces trajectories that extend
beyond the drivable area.

2) Driving command vs. Sequential navigation guidance:
As illustrated in Table V (ID 0-4), the results obtained
without any navigation information (ID 0) and with driving
commands (ID 1) exhibit no significant difference. The
performance achieved by solely utilizing TBT information
(ID 2) surpasses that of both (ID 0) and (ID 1). Notably,
when employing only two points spaced 20 meters apart as
the navigation path (ID 3), the model’s performance is com-
parable to that of (ID 2), indicating that the navigation path
can provide the model with effective spatial reference under

Lidar

Camera

INS
INS

Lidar

INS

Camera

Fig. 5: Hardware platform.

sparse sampling. The model achieves its optimal performance
when both the navigation path and TBT information are
used as sequential navigation guidance (ID 4). These results
demonstrate that sequential navigation guidance models nav-
igation information more effectively than driving commands
alone. Specifically, the navigation path provides long-term
trajectory constraints, while TBT information offers real-time
decision-making logic, such as road traffic conditions. The
synergy between these two elements mitigates the limitations
associated with relying on a single modality.

3) Optimal combination of navigation path & TBT in-
formation: We further investigated the optimal combina-
tion of navigation paths and TBT information, as practical
operations often face challenges in consistently obtaining
sufficiently dense navigation paths or accurate TBT infor-
mation. As shown in Table V (ID 3-8), we systematically
evaluated the impact of varying densities of navigation path
points and the inclusion of TBT information on the results.
Comparing (ID 3, 5, 7), it’s shown that 4 navigation points
spaced 10 meters apart yielded the best performance. Both
excessively sparse and overly dense configurations led to
diminished performance. Sparse navigation points fail to
accurately model the reference path, while overly dense
points impose excessive constraints on the model, resulting
in poor performance in scenarios such as obstacle avoid-
ance. Across (ID 3-8), the inclusion of TBT information
consistently improved performance under varying navigation
point densities. In conclusion, a moderate-density navigation
path combined with TBT information serves as an effective
SNG setting, optimally modeling navigation information and
maximizing the model’s planning performance.

D. Real world experiments

To further evaluate our proposed sequential navigation
guidance and model in real-world scenarios, we established
a validation platform for physical vehicles, as illustrated in
Fig. 5. The platform is equipped with a primary LiDAR, the
Innovusion Falcon 300, and a surround-view camera system
comprising five AR0820 cameras with a 120-degree horizon-
tal field of view (HFOV) and two AR0820 cameras with a
70-degree HFOV. The onboard computing unit consists of
dual Orin modules. We collect and create in-house dataset
and conduct experiments. As illustrated in Fig. 6, our method
demonstrates robust performance in scenarios involving both

(c)

(a)

(b)

Fig. 6: Qualitative analysis of real-world scenarios. (a)
depicts a straight-driving scenario. (b) represent right-turn
scenarios. (c) illustrates a left-turn scenario with construction
on the route.

straight paths and turns. Notably, as shown in Fig. 6 (c), even
under conditions of road construction on the main route, our
method successfully plans the correct left-turn trajectory.

VI. CONCLUSIONS

In this study, we investigate the limitations of current end-
to-end autonomous driving systems in utilizing navigation in-
formation and introduce a novel representation of navigation
information, termed Sequential Navigation Guidance, which
integrates long-term trajectory constraints and real-time de-
cision logic. Our model, based on SNG, achieves superior
performance in closed-loop evaluations without the need for
supervision from perception tasks. Experiments conducted
in real-world scenarios further confirm the robustness and
practical applicability of our approach.

REFERENCES

[1] T. Wu, A. Luo, R. Huang, H. Cheng, and Y. Zhao, “End-to-end
driving model for steering control of autonomous vehicles with future
spatiotemporal features,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 950–955.

[2] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López,
“Multimodal end-to-end autonomous driving,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 1, pp. 537–547, 2022.

[3] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang et al., “Planning-oriented autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 853–17 862.

[4] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, “End-to-end
autonomous driving: Challenges and frontiers,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 46, no. 12, pp. 10 164–
10 183, 2024.

[5] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek,
D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards
fully autonomous driving: Systems and algorithms,” in 2011 IEEE
Intelligent Vehicles Symposium (IV), 2011, pp. 163–168.

[6] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 2090–2096.

[7] B. Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang,
W. Liu, C. Huang, and X. Wang, “Vad: Vectorized scene representation
for efficient autonomous driving,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 8340–8350.

[8] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao, “St-p3: End-
to-end vision-based autonomous driving via spatial-temporal feature
learning,” in European Conference on Computer Vision. Springer,
2022, pp. 533–549.

[9] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger,
“Transfuser: Imitation with transformer-based sensor fusion for au-
tonomous driving,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 45, no. 11, pp. 12 878–12 895, 2023.

[10] D. Dauner, M. Hallgarten, T. Li, X. Weng, Z. Huang, Z. Yang, H. Li,
I. Gilitschenski, B. Ivanovic, M. Pavone, A. Geiger, and K. Chitta,
“Navsim: Data-driven non-reactive autonomous vehicle simulation
and benchmarking,” in Advances in Neural Information Processing
Systems (NeurIPS), 2024.

[11] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone, “Para-
drive: Parallelized architecture for real-time autonomous driving,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2024, pp. 15 449–15 458.

[12] C. Sima, K. Renz, K. Chitta, L. Chen, H. Zhang, C. Xie,
J. Beißwenger, P. Luo, A. Geiger, and H. Li, “Drivelm: Driving
with graph visual question answering,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2024, pp. 256–274.

[13] W. Zheng, R. Song, X. Guo, C. Zhang, and L. Chen, “Genad:
Generative end-to-end autonomous driving,” in Proceedings of the
European Conference on Computer Vision (ECCV), A. Leonardis,
E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, Eds.,
2024, pp. 87–104.

[14] W. Xu, J. Pan, J. Wei, and J. M. Dolan, “Motion planning under
uncertainty for on-road autonomous driving,” in 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2014, pp.
2507–2512.

[15] J.-T. Zhai, Z. Feng, J. Du, Y. Mao, J.-J. Liu, Z. Tan, Y. Zhang, X. Ye,
and J. Wang, “Rethinking the open-loop evaluation of end-to-end
autonomous driving in nuscenes,” arXiv preprint arXiv:2305.10430,
2023.

[16] Z. Li, Z. Yu, S. Lan, J. Li, J. Kautz, T. Lu, and J. M. Alvarez, “Is ego
status all you need for open-loop end-to-end autonomous driving?”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 14 864–14 873.

[17] G. Svennerberg, Beginning google maps API 3. Apress, 2010.
[18] X. Jia, Z. Yang, Q. Li, Z. Zhang, and J. Yan, “Bench2drive: Towards

multi-ability benchmarking of closed-loop end-to-end autonomous
driving,” in NeurIPS 2024 Datasets and Benchmarks Track, 2024.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[20] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai, “Bev-
former: learning bird’s-eye-view representation from lidar-camera via
spatiotemporal transformers,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

[21] L. Zhang, P. Li, J. Chen, and S. Shen, “Trajectory prediction with
graph-based dual-scale context fusion,” in 2022 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2022,
pp. 11 374–11 381.

[22] M. Naumann and C. Stiller, “Aib-mdp: Continuous probabilistic mo-
tion planning for automated vehicles by leveraging action independent
belief spaces,” in 2022 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2022, pp. 6373–6380.

[23] S. Casas, A. Sadat, and R. Urtasun, “Mp3: A unified model to
map, perceive, predict and plan,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
14 403–14 412.

[24] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet
strong baseline,” Advances in Neural Information Processing Systems,
vol. 35, pp. 6119–6132, 2022.

[25] X. Jia, Y. Gao, L. Chen, J. Yan, P. L. Liu, and H. Li, “Driveadapter:
Breaking the coupling barrier of perception and planning in end-to-end
autonomous driving,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2023, pp. 7953–
7963.

[26] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li, “Think twice
before driving: Towards scalable decoders for end-to-end autonomous
driving,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2023, pp. 21 983–21 994.

[27] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

[28] K. T. e. a. H. Caesar, J. Kabzan, “Nuplan: A closed-loop ml-
based planning benchmark for autonomous vehicles,” in CVPR ADP3
workshop, 2021.

[29] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 2446–2454.

[30] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou, “Metadrive:
Composing diverse driving scenarios for generalizable reinforcement
learning,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 45, no. 3, pp. 3461–3475, 2022.

[31] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[32] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati,
G. Tanzer, D. Vincent, Z. Pan, S. Wang et al., “Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context,” arXiv
preprint arXiv:2403.05530, 2024.

[33] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma,
P. Wang, X. Bi et al., “Deepseek-r1: Incentivizing reasoning capability
in llms via reinforcement learning,” arXiv preprint arXiv:2501.12948,
2025.

[34] Z. Xu, Y. Zhang, E. Xie, Z. Zhao, Y. Guo, K.-Y. K. Wong, Z. Li, and
H. Zhao, “Drivegpt4: Interpretable end-to-end autonomous driving via
large language model,” IEEE Robotics and Automation Letters, vol. 9,
no. 10, pp. 8186–8193, 2024.

[35] H. Shao, Y. Hu, L. Wang, G. Song, S. L. Waslander, Y. Liu, and
H. Li, “Lmdrive: Closed-loop end-to-end driving with large language
models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2024, pp. 15 120–15 130.

[36] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[37] C. Yuan, Z. Zhang, J. Sun, S. Sun, Z. Huang, C. D. W. Lee, D. Li,
Y. Han, A. Wong, K. P. Tee et al., “Drama: An efficient end-to-end
motion planner for autonomous driving with mamba,” arXiv preprint
arXiv:2408.03601, 2024.

[38] Z. Li, K. Li, S. Wang, S. Lan, Z. Yu, Y. Ji, Z. Li, Z. Zhu,
J. Kautz, Z. Wu et al., “Hydra-mdp: End-to-end multimodal planning
with multi-target hydra-distillation,” arXiv preprint arXiv:2406.06978,
2024.

[39] B. Li, Y. Zhang, D. Guo, R. Zhang, F. Li, H. Zhang, K. Zhang,
P. Zhang, Y. Li, Z. Liu et al., “Llava-onevision: Easy visual task
transfer,” arXiv preprint arXiv:2408.03326, 2024.

[40] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu,
F. Huang, H. Wei et al., “Qwen2. 5 technical report,” arXiv preprint
arXiv:2412.15115, 2024.

[41] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer, “Sigmoid loss
for language image pre-training,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2023, pp. 11 975–11 986.

[42] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” in International conference on machine learning. PMLR,
2023, pp. 19 730–19 742.

[43] J. Cheng, Y. Chen, X. Mei, B. Yang, B. Li, and M. Liu, “Rethinking
imitation-based planners for autonomous driving,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024, pp. 14 123–14 130.

	Introduction
	Related Work
	End to end autonomous driving
	Navigation information for planning
	Multimodal large models for planning

	System Overview
	Methods
	Modeling Navigation Information
	Driving command
	Sequential navigation guidance

	Network Architecture
	Scene representation
	Transformer Decoder

	Experiments
	Implementation Details
	Main results
	Ablation study
	Driving Command Fails to model Navigation information
	Driving command vs. Sequential navigation guidance
	Optimal combination of navigation path & TBT information

	Real world experiments

	Conclusions
	References

